
ROOT packaging with Conda

Chris Burr

ROOT User’s Workshop 2022 ○ 10th May 2022

Image: CERN-EX-66954B © 1998-2018 CERN

https://cds.cern.ch/record/39312

christopher.burr@cern.ch ○ ROOT Users Workshop 2022 ○ ROOT packaging with Conda
 2

➤ What is package management and why should you care?

➤ The takeaway message depends on why you’re here:

➤ If you’re a Physicist: Makes it easier to experiment, collaborate and preserve research

➤ If you’re Providing Support: Enables you to guide users be more efficient

➤ If you’re a ROOT Developer: Make ROOT more user friendly

➤ Why is Conda in particular useful for problems we face?

What is point of this talk?

mailto:christopher.burr@cern.ch

What is package management?

Well? What is the problem?

christopher.burr@cern.ch ○ ROOT Users Workshop 2022 ○ ROOT packaging with Conda
 5https://xkcd.com/1987/

LCG from EP-SFT

LCG from LHCb

mailto:christopher.burr@cern.ch
https://xkcd.com/1987/

christopher.burr@cern.ch ○ ROOT Users Workshop 2022 ○ ROOT packaging with Conda
 6https://xkcd.com/1987/

GCC 7.3

GCC9.2

GCC11

Clang 9

Clang 12

Clang 13

Clang 14

Homebrew

ROOT builtin

Homebrew + Python 3.10

Self compiled against Python 3.9

(but broken since updating to 3.10 homebrew)

LCG from EP-SFT

LCG from LHCb

mailto:christopher.burr@cern.ch
https://xkcd.com/1987/

christopher.burr@cern.ch ○ ROOT Users Workshop 2022 ○ ROOT packaging with Conda

LCG from EP-SFT

LCG from LHCb

7https://xkcd.com/1987/

Homebrew

ROOT builtin

Homebrew + Python 3.10

Self compiled against Python 3.9

(but broken since updating to 3.10 homebrew)

GCC 7.3

GCC9.2

GCC11

Clang 9

Clang 12

Clang 13

Clang 14

mailto:christopher.burr@cern.ch
https://xkcd.com/1987/

christopher.burr@cern.ch ○ ROOT Users Workshop 2022 ○ ROOT packaging with Conda

Homebrew + Python 3.10

Self compiled against Python 3.9

(but broken since updating to 3.10 homebrew)

GCC 7.3

GCC9.2

GCC11

Clang 9

Clang 12

Clang 13

Clang 14

GCC 7.3

GCC9.2

GCC11

LCG from EP-SFT

LCG from LHCb

8https://xkcd.com/1987/

Homebrew

ROOT builtin

mailto:christopher.burr@cern.ch
https://xkcd.com/1987/

christopher.burr@cern.ch ○ ROOT Users Workshop 2022 ○ ROOT packaging with Conda
 9

Homebr

G

Cl

G

LCG

LC

Ho

L L

h

L L

h

Ho

G

C

G

h

H

H

H

HL L

h

H

H

H

mailto:christopher.burr@cern.ch
https://xkcd.com/1987/
https://xkcd.com/1987/
https://xkcd.com/1987/
https://xkcd.com/1987/

So…how can this be better?

christopher.burr@cern.ch ○ ROOT Users Workshop 2022 ○ ROOT packaging with Conda
 11

➤ Automates the process of installing, upgrading, and removing software

➤ Generic package managers

➤ Can provide almost any piece of software

➤ Examples: apt-get, yum, zypper, pacman, brew, port, emerge, nix, conda…

➤ Application-level package managers

➤ Targeted at a specific programming language or application

➤ Can have specialised integrations (especially for development)

➤ Examples: pip, cargo, yarn, npm, go, cpan, cran, ctan, maven, …

What is a package manager?

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ ROOT Users Workshop 2022 ○ ROOT packaging with Conda
 12

➤ Language agnostic package manager (Python, C++, R, Julia, Rust, Go, Java, Ruby, Fortran, …)

➤ Multi platform (Linux, macOS, Windows)

➤ Multi architecture (i386, x86_84, aarch64, ppc64le, partially s390x and could imagine adding others)

➤ Provides “environments” which are self contained sysroots in a folder

➤ No admin privileges required

➤ Easy to preserve long term

➤ Easily switch between Python versions, compilers and other packages

What is Conda

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ ROOT Users Workshop 2022 ○ ROOT packaging with Conda
 13

➤ Community maintained collection of conda packages

➤ Over 17,900 packages available and rapidly growing

➤ Over 3,900 maintainers

➤ Over 350,000,000 package downloads each month

➤ Fiscally sponsored project of NumFOCUS

➤ Work with many organisations to better support use cases (e.g. nvidia with CUDA)

➤ Includes everything “user facing” (vim/curl/findutils/htop/…)

conda-forge

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ ROOT Users Workshop 2022 ○ ROOT packaging with Conda

Homebrew + Python 3.10

Self compiled against Python 3.9

(but broken since updating to 3.10 homebrew)

GCC 7.3

GCC9.2

GCC11

Clang 9

Clang 12

Clang 13

Clang 14

Homebrew + Python 3.10

Self compiled against Python 3.9

(but broken since updating to 3.10 homebrew)

GCC 7.3

GCC9.2

GCC11

Clang 9

Clang 12

Clang 13

Clang 14

LCG from EP-SFT

LCG from LHCb

14https://xkcd.com/1987/

Homebrew

ROOT builtin

mamba create --name my-analysis \

 python=3.10 ipython pandas matplotlib \

 root boost \

 tensorflow xgboost \

 bash htop vim git

Allows you to combine software easily

An environment is just a folder

Can trivially create one for each task

mailto:christopher.burr@cern.ch
https://xkcd.com/1987/

christopher.burr@cern.ch ○ DIRAC Users Workshop 2022 ○ On Python 3, DIRACOS, and other FAQs

An aside: conda vs mamba vs micromamba vs anaconda

15

➤ Conda-forge has grown very large, conda sometimes struggles to manage

➤ Mamba is an alternative implementation with a faster dependency solver

➤ Will replace the default Conda solver eventually

➤ Latest version of Conda supports using mamba by passing “--experimental-solver=libmamba”

➤ For details see: A faster Conda for a growing community

➤ Micromamba is a small standalone binary that is mostly-compatible

➤ Very helpful as a small/fast alternative for CI and containers

➤ Anaconda Inc. provides the commercial Anaconda and Miniconda installers

➤ Not compatible with DIRAC, should make a new environment with Conda-forge

➤ Or use one of the free Miniforge installers

TLDR: If Conda is slow, replace conda install/create with mamba install/create

mailto:christopher.burr@cern.ch
https://github.com/mamba-org/mamba#readme
https://www.anaconda.com/blog/a-faster-conda-for-a-growing-community
https://github.com/mamba-org/mamba#micromamba
https://github.com/conda-forge/miniforge/#readme

christopher.burr@cern.ch ○ ROOT Users Workshop 2022 ○ ROOT packaging with Conda

➤ Reliably install ROOT in under 5 minutes on any* machine

➤ Linux, macOS, and Windows Subsystem for Linux (ROOT doesn’t support native 64-bit Windows)

➤ Complete installation with C++17, graphics, OpenGL, root7

➤ Seamlessly integrates with the rest of conda-forge

➤ No PYTHONPATH/LD_LIBRARY_PATH mess

➤ Easily switch between versions of Python, ROOT and anything else

➤ Downloaded over 375,000 times

➤ Also provide a nightly build of master

conda create --name root-nightly-env \ 
 -c https://root.cern/download/conda-nightly/latest \ 
 root-nightly

16

ROOT

*Almost

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ ROOT Users Workshop 2022 ○ ROOT packaging with Conda

➤ Conda(-forge) has very robust support for many platforms

➤ linux-64, osx-64, win-64, osx-arm64, linux-aarch64, linux-ppc64le (more are likely to appear)

➤ Cona-forge has very robust infrastructure for (cross-)compiling to many architectures

➤ The linux-aarch64 and linux-ppc64le packages are built by cross-compiling*

➤ Many osx-arm64 packages were available before the release of ARM Macs

➤ Enabling cross-compilation is surprisingly easy (and often trivial)

17

Other architectures

*For simplicity automatic emulation with binfmt_misc +QEMU is used to run rootcling_stage1, generate hsimple.root and run tests

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ ROOT Users Workshop 2022 ○ ROOT packaging with Conda

➤ The main downside to Conda environments is they are often large

➤ With many small files

➤ Works fine with SSD storage, manageable with HDD

➤ Slow with AFS and unusable with EOSFUSE

➤ Impractical to do on every node for large batch/grid submissions

➤ Ideally need a filesystem for distributing many small read-only files…

18

Downsides

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ ROOT Users Workshop 2022 ○ ROOT packaging with Conda

➤ Having the ability to manage arbitrary environments is nice

➤ But 90% of use cases just need a recent version of popular packages

➤ LHCb now distributes several Conda environments on CVMFS

➤ Environment activation is hidden behind a command modelled after the LHCb physics application launcher

➤ Versioned by date+time and never removed for long term preservation

➤ Solves the storage IOPS issues with environment creation

➤ Makes collaboration simpler: no need to explain how to make environments

19

User analysis environments on CVMFS in LHCb

Syntax: lb-conda ENV_NAME[/DATE] [COMMAND]

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ ROOT Users Workshop 2022 ○ ROOT packaging with Conda

➤ Providing the default LHCb computing environment (lxplus, institutes, locally)

➤ Distributing calibration tools

➤ Running the grid middleware clients and services (DIRAC)

➤ Running pilot jobs on the grid

➤ WIP: New nightly build infrastructure (replacing Jenkins)

20

Other uses of conda-forge in LHCb

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ ROOT Users Workshop 2022 ○ ROOT packaging with Conda

➤ The matrix of builds is slowly getting out of hand

➤ 5 platforms x 4 Python versions = 20 builds, each taking 2+ hours

➤ Enabling CUDA would ~triple this!

➤ Standalone builds for PyROOT and CUDA on top of a base installation would make this much simpler

➤ An environment containing ROOT and it’s dependencies is 2.2GB!

➤ ROOT itself is 640MB

➤ Having a widely agreed convention for how to split up ROOT into components would save a lot of resources

➤ True cross-compilation support

➤ Currently no public CI providers are supporting macOS on ARM and emulation isn’t possible

➤ Supporting multiple versions?

➤ Downstream packages have to be built for each ROOT release (no ABI compatibility)

➤ Could consider supporting multiple (e.g. latest patch of 6.24.x and 6.26.x)

21

What could be improved for distributing ROOT?

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ ROOT Users Workshop 2022 ○ ROOT packaging with Conda

➤ Hopefully you can see how package management is useful!

➤ Conda allows end users to easily manage their own software environments

➤ But for larger communities central management can be a helpful addition

➤ Conda-forge is an friendly and open community

➤ If something is missing or broken, or if you maintain a package, please consider helping out!

➤ Bots take care of most of the tedious work most packages are very little effort to maintain

22

Summary and Conclusions

Thanks to everyone in the ROOT team who has helped support

the maintenance of the Conda package!

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ ROOT Users Workshop 2022 ○ ROOT packaging with Conda

1a) Download Linux and Windows Subsystem for Linux* (replace x86_64 with aarch64/ppc64le) 

wget -nv https://github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-Linux-x86_64.sh -O mambaforge.sh

1b) Download macOS (replace arm64 with x86_64 for Intel Macs) 

wget -nv https://github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-MacOSX-arm64.sh -O mambaforge.sh

2) Install conda 

bash mambaforge.sh -b -p $HOME/mambaforge 

source $HOME/mambaforge/etc/profile.d/conda.sh 

conda config --set auto_activate_base false

3) Create an environment and activate it 

mamba create --name my-environment python=3.10 ipython root jupyterlab

conda activate my-environment

23

How to install ROOT using conda?

*WSL only as ROOT doesn’t support native 64-bit Windows

<- Can be safely added to your bashrc, only provides the 

 “conda activate” shell function

mailto:christopher.burr@cern.ch

Questions?

How does conda-forge work?

christopher.burr@cern.ch ○ DIRAC Users Workshop 2022 ○ On Python 3, DIRACOS, and other FAQs

➤ Create a pull request against

https://github.com/conda-forge/staged-recipes

➤ Can be mostly automated using

conda skeleton pypi zfit

26

Adding a new package to conda-forge

mailto:christopher.burr@cern.ch
https://github.com/conda-forge/staged-recipes

christopher.burr@cern.ch ○ DIRAC Users Workshop 2022 ○ On Python 3, DIRACOS, and other FAQs
 27

Updates

➤ Bots monitor for new releases

➤ Even works with non-standard URLs

➤ Maintainers normally just have to

click merge

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ DIRAC Users Workshop 2022 ○ On Python 3, DIRACOS, and other FAQs

➤ Conda only supports installing binaries*

➤ Relies on the solver knowing about API/ABI compatibility

➤ Packages with shared libraries should specify what their ABI stability is

➤ Doesn’t necessarily restrict what you can do

➤ Variants can be used to provide a matrix of different builds

➤ BLAS can be provided by netlib, mkl, blis and openblas

➤ Several MPI variants

➤ TensorFlow has CPU and (several) GPU variants

28

Binary only distribution

*Some organisations mirror the conda-forge build infrastructure for their own internal use

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ DIRAC Users Workshop 2022 ○ On Python 3, DIRACOS, and other FAQs

➤ What about when ABIs change? More 🤖!

➤ A line is added to a git repository

➤ Pull requests appear that rebuild packages in the correct order

29

Migrations

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ DIRAC Users Workshop 2022 ○ On Python 3, DIRACOS, and other FAQs

➤ Migration is currently ongoing for ppc64le and aarch64 support

➤ ROOT is included as a target

➤ Support for compiling CUDA with nvcc is rapidly maturing

➤ Adds three additional additional targets (different driver versions)

➤ Close to being fully supported by the conda-forge tooling

➤ GPU variants of packages are already being added

30

Alternative architectures

mailto:christopher.burr@cern.ch

christopher.burr@cern.ch ○ DIRAC Users Workshop 2022 ○ On Python 3, DIRACOS, and other FAQs
 31

How not to use pip

➤ Installing should be as simple as:

pip install PACKAGE_NAME

➤ Don’t use things that modify global state:

sudo pip install PACKAGE_NAME

➤ Interacts poorly with system package managers

➤ Can make it impossible to update or install packages using apt/yum/pacman/…

pip install --user PACKAGE_NAME

➤ Normally has a higher priority in the Python search order

➤ Can break other installations (e.g. use on lxplus can break your experiments software stack)

➤ venv allow you to create environments from arbitrary Python installs

mailto:christopher.burr@cern.ch
https://en.wikipedia.org/wiki/Jolly_Roger#/media/File:Pirate_Flag.svg

christopher.burr@cern.ch ○ DIRAC Users Workshop 2022 ○ On Python 3, DIRACOS, and other FAQs

➤ One repository per package (“feedstock”)

➤ All packages are built using well known CI providers

➤ Currently mostly Azure Pipelines with Travis CI providing linux-ppc64le and linux-aarch64

➤ All managed by an external package: conda-smithy

➤ Used to regenerate CI configuration for each update

32

Build infrastructure for conda-forge

mailto:christopher.burr@cern.ch

